Selasa, 09 Juli 2013

Multiplication

rangakaian untuk melakukan operasi perkalian, dapat digunakan dengan:



Perkalian 2 x 2 



Rabu, 03 Juli 2013

Rangkaian Penjumlahan dan Pengurangan Aritmatika Digital

a = 11 (biner dalam 5 bit adalah 01011)
b = 4 (bier dalam 5 bit adalah 00100)

1. Penjumlahan
    Maka dala penjumlahan, a+b = 01011 + 00100 harus sama dengan 01111 (dalam desimalnya adalah 15). Gambar dibawah adalah rangkaiannya.




2. Pengurangan
      Maka dala penjumlahan, a+b = 01011 - 00100 harus sama dengan 00111 (dalam desimalnya adalah 7). Gambar dibawah adalah rangkaiannya.




semoga postingan ini membantu teman teman sekalian ... good luck ^^


Minggu, 26 Mei 2013

Digital Aritmatica

TASK
6-2.    Represent each of the following signed decimal numbers in the 2’s-complement system. Use  a total of eight bits including the sign bit.
                a. +32 = 0010 0000 = 32
                        1101 1111
                                         1    +          
                        1110 0000  = -32

            b. -14   = 0000 1110 = 14
                        1111 0001
                                         1    +          
                        1111 0010  = -14

                c. +63 = 0011 1111 = 63
                          1100 0000
                                           1    +        
                        1100 0001  = -63

d. -104= 0110 1000 = 104
                          1001 0111
                                           1    +        
                        1001 1000  = -104
           
e. +127            = 0111 1111 = 127
                            1000 0000
                                             1    +      
                             1000 0001  = -127
           

            f. -127= 0111 1111 = 127
                         1000 0000
                                          1    +         
                         1000 0001  = -127

            g. +89= 0101 1001 = 89
                         1010 0110
                                          1    +         
                         1010 0111  = -89
           
           

              h. -55 = 0011 0111 = 55
           
 1100 1000
                                         1    +          
                         1100 1001  = -55
           
i. -1= 0000 0001 = 1
                      1111 1110
                                      1    + 
                       1111 1111  = -1
           
j. -128 = Erorr
           
k. +169= erorr

                l.  0 = 0000 0000  = 0
                      1111 1111
                                    1    +   
                      0000 0000  = 0
               m.  +84= 0101 0100 = 84
                                  1010 1011
                                                   1    +   
                                 1010 1100   = -84
               
  n.  +3= 0000 0011 = 3
                          1111 1100
                                         1    +          
                        1111 1101   = -3
           
 o.  -3= 0000 0011 = 3
                        1111 1100
                                       1    +
                          1111 1101   = -3

  p.  -190 = Erorr
               
               











6-3.    Each of the following numbers represents a signed decimal number in the 2’s-complement system. Determine the decimal value in each case. (Hint Use negation to convert negative numbers to poritive.)

                a. 01101
            = 01101  = 13
                                10010
                                          1    +         
                                10011  =  - 13
Negative numbers to positive
                                01100
                                         1    +          
                                 01101   =  + 13

                        b. 11101
  = 11101  = 29
                                00010
                                         1    +          
                                00011  =  - 29
Negative numbers to positive
                                11100
                                         1    +          
                                 11101   =  + 29


            c. 0111 1011
= 0111 1011  = 123
                         1000 0100
                                         1    +          
                         1000 0101  =  - 123
Negative numbers to positive
                         0111 1010
                                         1    +          
                         0111 1011  =  + 123

d. 1001 1001
= 1001 1001  = 153
                         0110 0110
                                         1    +          
                         0110 0111  =  - 153
Negative numbers to positive
                         1001 1000
                                         1    +          
                         1001 1001  =  + 153


e.  0111 1111
= 0111 1111 = 127
                         1000 0000
                                         1    +          
                         1000 0001  =  - 127
Negative numbers to positive
                         0111 1110
                                         1    +          
                         1111 1111  =  + 127

f.  1000 0000
= 1000 0000 = 128
                         0111 1111
                                         1    +          
                         1000 0000  =  - 128
Negative numbers to positive
                         0111 1111
                                         1    +          
                         1000 0000 =  + 128
g.  1111 1111
= 1111 1111 = 255
                         0000 0000
                                         1    +          
                         0000 0001  =  - 255
Negative numbers to positive
                         1111 1110
                                         1    +          
                         1111 1111  =  + 255

h.  1000 0001
= 1000 0001  = 129
                         0111 1110
                                         1    +          
                         0111 1111  =  - 129

Negative numbers to positive
                         1000 0000
                                         1    +          
                         1000 0001  =  + 129

i.  0110 0011
= 0110 0011  = 99
                         1001 1100
                                         1    +          
                         1001 1101  =  - 99
Negative numbers to positive
                         0110 0010
                                         1    +          
                         0110 0011  =  + 99

j.  1101 1001
= 1101 1001  = 217
                         0010 0110
                                         1    +          
                         0010 0111  =  - 217
Negative numbers to positive
                         1101 1000
                                         1    +          
                         1101 1001  =  + 217


6-4     a. What range of signed decimal can be representusing 12 bits including the sign bit ?

            Answer :
             
            Range of signed decimal represent using 12 bits including the sign bit

            1 0 0 0 0 0 0 0 0 0 0 0 = -212 =  - 4096


6-4.    b. How many bits would be required to represent decimal numbers from  -32.768  to  +32.767 ?

= 1111 1111 1111 1111 = 32.768
          0000 0000 0000 0000
                                         1    +          
                        0000 0000 0000 0001   =  - 32.768
Negative numbers to positive
          1111 1111 1111 1110
                                         1    +          
                         1111 1111 1111 1111  =  + 32.768

            = 0111 1111 1111 1111  = 32.767
          1000 0000 0000 0000
                                         1    +          
                        1000 0000 0000 0001   =  - 32.767
Negative numbers to positive
                        0111 1111 1111 1110
                                         1    +          
                        0111 1111 1111 1111  =  + 32.767
  
         SECTION 6-5 

               List in order all of the signed numbers that can be represent in five bits using 2’s
               complement !

            Answer:

               a.1 0 0 0 1 = -1

               b.1 0 0 1 0 = -2

               c.1 0 0 1 1 = -3

               d.1 0 1 0 0 = -4

               e.1 0 1 0 1 = -5

               f.1 0 1 1 0 = -6

               g.1 0 1 1 1 = -7




6-6.    Represent each of the following decimal values as an -8 bit signed binary value. Then negate each one.
            a.  +73
            = 0100 1001  = 73
                         1011 0110
                                         1    +          
                         1011 0111  =  - 73
Negative numbers to positive
                         0100 1000
                                         1    +          
                         0100 1001  =  + 73
b.  -12
            = 0000 1100  = 12
                         1111 0011
                                         1    +          
                         1111 0100  =  - 12
Negative numbers to positive
                         0000 1011
                                         1    +          
                         0000 1100  =  + 12
c.  +15
            = 0000 1111  = 15
                         1111 0000
                                         1    +          
                         1111 0001  =  - 15

Negative numbers to positive
                         0000 1110
                                         1    +          
                         0000 1111  =  + 15

d.  -1
            = 0000 0001  = 1
                         1111 1110
                                         1    +          
                         1111 1111  =  - 1
Negative numbers to positive
                         0000 0000
                                         1    +          
                         0000 0001  =  + 1
e.  -128
= 1000 0000 = 128
                        0111 1111
                                         1    +          
                        1000 0000  = -128
Negative numbers to positive
                         0111 1111
                                         1    +          
                         1000 0000  =  + 128
f. +127
            = 0111 1111 = 127
                        1000 0000
                                         1    +          
                        1000 0001  = -127
            Negative numbers to positive
                        0111 1110
                                        1    +           
                        0111 1111 = +127

6-7 What is the range of the unsigned decimals values that can be represent in 10 bits?
What is the range of signed decimals values using he same number or bits ?

Answer :

a.      Range of the unsigned decimals in 10 bits = 0 to 1023
b.      Range of the signed decimals in 10 bits = -1024 to -1